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Abstract. We compare the glueball mass spectrum of an effective N = 1 pure super Yang–Mills theory
formulated in terms of a three-form supermultiplet with the available lattice data. These confirm the
presence of four scalars and two Majorana fermions but the detailed mass spectrum is difficult to reconcile
with the effective supersymmetric theory. By imposing supersymmetry and using two of four bosonic
masses we get a prediction for the remaining masses as well as the mixing angles. We find that the mass of
the three-form dominates over the contribution of the Veneziano–Yankielowicz–Dijkgraaf–Vafa term. As
a byproduct we introduce a Fayet–Iliopoulos term for the three-form multiplet and show that it generates
a glueball condensate.

1 Introduction

Recently there has been considerable progress in under-
standing some aspects of strongly coupled N = 1 su-
persymmetric gauge theories in four space-time dimen-
sions below their confinement scale [1–3]. More precisely,
corrections to the Veneziano–Yankielowicz superpotential
[4] have been proposed and conjectured to give an exact
superpotential W (S) in terms of the glueball superfield
S = trWαWα. Among other things these developments
strengthened the belief that an effective action is the ap-
propriate description of confined supersymmetric N = 1
gauge theories.

However, it has been pointed out in [5] that the Vene-
ziano–Yankielowicz superpotential only gives rise to mass
terms of the (complex) gluino condensate 〈λλ〉 but that the
glueballs 〈FµνF

µν〉 and 〈FµνF̃
µν〉 remain massless. The

reason is that in the Veneziano–Yankielowicz approach the
glueball 〈FµνF

µν〉 appears in the auxiliary F component
of the chiral superfield S and hence no mass term can arise.
S only contains two physical scalars and therefore cannot
be adequate to describe the dynamics of the four bound
states 〈λλ〉, 〈λ̄λ̄〉, 〈FµνF

µν〉 and 〈FµνF̃
µν〉.

However, as stressed in [5, 6] S really is a constrained
chiral multiplet and should better be viewed as the field
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strength S ∼ D̄2U of a three-form multiplet U . Adopting
this point of view it is possible to add a supersymmetric
mass term for U and in this way introduce two additional
massive bosonic and fermionic degrees of freedom and gen-
erate glueball masses [5].

Independent of these developments lattice simulations
of supersymmetric pure SU(2) gauge theories have been
improved [7–9].1 Most of the lattice computations use
Wilson-type lattice actions where supersymmetry is softly
broken by a gluino mass term and later recovered in the
continuum limit. The spectrum of the low-lying glueball
and gluino condensates has been computed and shown
to contain four scalar fields and two Majorana fermions.
Furthermore, supersymmetric Ward identities have been
checked indicating that supersymmetry is recovered in the
continuum limit. The purpose of this letter is to compare
the lattice results of [7] a little more carefully with the
approach of [5] and show that in order to reach agreement
strong consistency constraints for both the lattice simula-
tions and the low energy effective Lagrangian emerge. We
first briefly review the proposal of [5] and then compare it
with the lattice simulations. By imposing supersymmetry
and fitting two bosonic masses we get a prediction for the
remaining masses as well as the mixing angles. We find that
the mass of the three-form dominates over the contribu-
tion of the Veneziano–Yankielowicz–Dijkgraaf–Vafa term.
As a byproduct we also introduce a Fayet–Iliopoulos term
for the three-form multiplet and show that it generates a
glueball condensate 〈FµνF

µν〉.
1 The results on SU(3) are in [10] while the subject is re-

viewed in [11]
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2 The Veneziano–Yankielowicz
effective action

The starting point is a pure N = 1 supersymmetric SU(N)
gauge theory with a vector multiplet V in the adjoint rep-
resentation of SU(N). As physical components it includes
a vector field vµ and a gluino λα both in the adjoint repre-
sentation of SU(N). The superspace Lagrangian reads [12]

L = − i
8π

∫
d2θ τ trWαWα + h.c. (1)

= − 1
2g2 trFµνF

µν − Θ

16π2 trFµνF̃
µν +

i
g2 tr λ̄σ̄µDµλ ,

where τ ≡ Θ
2π +i 4π

g2 is the complex gauge coupling and Wα

is the superfield which contains the field strength Fµν . It
is defined in terms of a real vector superfield V = V † as

Wα = −1
4
D̄2e−V DαeV , (2)

Due to its definition it obeys [6, 12]

D̄α̇Wα = 0 , DαWα = D̄α̇W̄
α̇ , (3)

where Dα,Dα̇ are the gauge covariant superspace deriva-
tives.

It is believed that this asymptotically free gauge theory
confines below the scale

Λ = M e
2πiτ
3N , (4)

where M is some high energy scale at which the gauge
theory (and the coupling τ) are defined. Below the con-
finement scale Λ colorless bound states form such as the
gluino condensates 〈λαλα〉, 〈λ̄α̇λ̄

α̇〉 and the CP -even and
CP -odd glueballs 〈FµνF

µν〉, 〈FµνF̃
µν〉. They do not break

supersymmetry [13] but they do break the chiral symmetry
λ → eiκλ of the original theory (1).

Veneziano and Yankielowicz [4] proposed an effective
description below the confinement scale Λ in terms of a
chiral superfield S := trWαWα with the effective La-
grangian2

Leff =
∫

d4θKeff(S, S̄) +
∫

d2θWeff(S) , (5)

where

Weff(S) = N̂ S

(
ln

S

Λ3 − 1
)
, N̂ ≡ N

32π2 . (6)

The superpotential W is designed to reproduce the chiral
anomaly. K was originally fixed by dimensional analysis
and superconformal anomalies to be Keff(S, S̄) = 1

α (SS̄)
1
3

2 In [4, 5] a different definition is used: S = β(g)
2g

tr W αWα

where β(g) is the (exact) β-function. Here we prefer to define
S without factors of the gauge coupling in order to keep the
holomorphic properties transparent. In string theory τ is not
a constant but rather a dynamical chiral superfield

withα being a dimensionless normalization constant [4,14].
However, by allowing Keff to explicitly depend on Λ more
general Kähler potentials are conceivable. Therefore in our
analysis we will not use a specific Keff but instead express
everything in terms of appropriate derivatives of Keff .

In accord with the Witten index [13] this effective the-
ory has N supersymmetric ground states determined by
∂Weff

∂S = 0 which correspond to3

〈S〉 = Λ3e
2πin
N , n = 0, . . . , N − 1 . (7)

The appearance of these N ground states from the min-
imization of W is a bit tricky and has been discussed
in [3, 15]. We return to this issue in our discussion of the
three-form multiplet.

Dijkgraaf and Vafa [1] added a chiral multiplet in the
adjoint representation of SU(N) to the original pure super-
symmetric Yang–Mills theory (1). By giving this multiplet
a large mass it can be integrated out of the effective action
but it leaves behind polynomial corrections in W which
are of the form Weff(S) = N̂ S

(
ln S

Λ3 − 1
)

+ N̂
∑

n anS
n.

These corrections shift the location of 〈S〉 and also shift
the mass term.

S has an expansion in terms of component fields:

S = trλαλα+. . .−θ2
(

tr
1
2
FµνF

µν +
i
2

trFµνF̃
µν + . . .

)
,

(8)
and thus (7) implies the formation of the gluino conden-
sate 〈λαλα〉 while the glueball condensates 〈FµνF

µν〉 and
〈FµνF̃

µν〉 do not form. Similarly, expanding Weff around
〈S〉 one finds a mass term for 〈λαλα〉 but no glueball
masses.

It is this fact that led Farrar, Gabadaze and Schwetz
to propose a modification of the VY effective action [5] by
formulating the effective theory in terms of a three-form
multiplet U .4 The necessity to amend or reformulate the
VY description had been stressed before in [6, 15]. The
common criticism amounts to the fact that the second
constraint in (3) should be taken seriously as a quantum
constraint. In terms of S = trW 2 this constraint reads

D2S − D̄2S̄ = Ω , (9)

where Ω is a superfield whose lowest component is the
topological density trFF̃ , i.e.

Ω = iεµνρσFµνFρσ+θ . . . = −4iεµνρσ∂µωνρσ+θ . . . , (10)

with ωνρσ = tr
(
vν∂ρvσ − 2

3 ivνvρvσ

)
being the Chern–

Simons three-form. In other words, the lowest component
3 The U(1) chiral symmetry is not completely broken by the

anomaly but appropriate integer shifts of θ leave a discrete Z2N

intact. The gluino condensate is only invariant under λ → −λ
and thus it breaks the Z2N to Z2. As a consequence N different
ground states appear which are parameterized by the phase of
S

4 Alternative ways of generating glueball masses have been
suggested in [16]
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of Ω is the field strength of a three-form. In fact S itself
can be viewed as the field strength supermultiplet of a
three-form multiplet U . Before we come to the effective
action let us therefore briefly recall some facts about the
three-form multiplet [6, 17].

3 The three-form multiplet

A real vector superfield V has in its θθ̄ component a vec-
tor field vµ. However, one can equivalently use the Hodge
dual three-index antisymmetric tensor or in other words
the three-form C3 as the θθ̄ component of a real vector su-
perfield.5 The difference emerges when one considers the
corresponding field strengths which are not dual to each
other. The field strength of a vector superfield V is the
chiral superfield Wα introduced in (2) which contains Fµν

as the θ component and is invariant under the gauge trans-
formations V → V +Φ+ Φ̄ where Φ is a chiral superfield.
In components this transformation contains the standard
gauge transformation vµ → vµ + ∂µα.

Let U = U† be the superfield which contains C3 in its
θθ̄ component. Its field strength S is defined by6

S = −4D̄2U , S̄ = −4D2U , (11)

which is a constrained chiral superfield in that it satisfies

D̄α̇S = 0 , D2S − D̄2S̄ = Ω . (12)

Here Ω is a superfield which contains the four-form field
strength F4 = dC3 in its lowest component. S (and Ω)
are left invariant by the superfield gauge transformation
U → U +L, where L is a linear multiplet obeying D2L =
D̄2L = 0. At the component level this corresponds to the
three-form gauge invariance C3 → C3 + dΘ2 which leaves
F4 invariant. Note that (12) does allow for the possibility
of a supersymmetric VEV 〈S〉 since (12) is invariant under
the (supersymmetric) shift S → S + const. Thus a more
precise version of (11) reads S = 〈S〉 − 4D̄2U . We will
come back to this issue in the next section.

A massless three-form contains no physical degree of
freedom since its field strength F4 is dual to a constant. At
the level of superfields this duality states that a three-form
multiplet is dual to a chiral multiplet with the physical
degrees of freedom being a Weyl fermion and a complex
scalar [6]. Since the gauge invariance is unbroken the most
general action can be expressed in terms of only the field
strength S and reads

L =
∫

d4θK(S, S̄) +
∫

d2θW (S) + h.c. (13)

Thus we see that standard interactions of the chiral field
strength S describe a massless three-form multiplet. How-
ever, the presence of the three-form does change the mini-

5 The two fields are related via vµ ∼ εµνρσCνρσ

6 A generic chiral superfield Φ can always be written in terms
of an unconstrained superfield X as Φ = D̄2X, Φ̄ = D2X̄, but
in general X is not real

mum energy condition. After carefully dualizing the three-
form one finds that the potential is minimized by [6]

∂Ŵ (S)
∂S

= 0 , where Ŵ (S) = W (S) + icS . (14)

At the tree level c is a real constant, the dual of F4. Adding
a term icS to W has also been advocated in [3, 15] by a
different reasoning. Here we see that it naturally appears
if one takes S to be the field strength of a three-form
multiplet. Furthermore, the effective theory is known to
have domain wall solutions interpolating between the N
different ground states of (7) [18]. The three-form C3 is the
gauge field which naturally couples to these domain walls.
The charge satisfies a Dirac-type quantization condition
which in turn results in the quantization c = n

16π , n ∈ N
[18, 19]. Using (14) one now finds the N different ground
states displayed in (7) as the minimum energy condition.
So far we considered a massless three-form multiplet. Let
us now discuss the modifications which appear when a
mass term and a Fayet–Iliopoulos term for C3 are included.
A massive three-form has one physical degree of freedom
which it gains by “eating” an appropriate Goldstone boson.
This Goldstone boson is a two-form B2 with an invariant
coupling L ∼ (C3 − dB2)2. B2 can be removed from the
Lagrangian by an appropriate gauge transformation. In a
supersymmetric theory B2 resides in a linear multiplet G
and thus the Lagrangian (13) receives the additional terms

δLmU
= −

∫
d4θ

(
1
2
m2

U (U −G)2 − ξ(U −G)
)
. (15)

We see that the gauge invariance U → U + L can be
maintained by assigning the transformation lawG → G+L
to the linear multiplet G. Keeping the three-form gauge
invariance is crucial since for the SU(N) gauge theory it
is related to ordinary gauge invariance. This can be seen
from the fact that in this case the three-form is nothing
but the Chern–Simons three-form which does transform
under the (non-Abelian) gauge symmetry. In this way the
three-form gauge invariance is linked to SU(N) invariance.

If one fixes a gauge U = U ′ + G (“unitary gauge”) G
disappears from the action or in other words it is “eaten”
by U . In this gauge the “longitudinal” degrees of free-
dom of U which are a gauge redundancy in the massless
case become physical degrees of freedom. One bosonic de-
gree of freedom is represented by the massive three-form
which is dual to a scalar. Supersymmetry requires that this
scalar comes accompanied with an additional bosonic and
two fermionic degrees of freedom originally residing in G.
Thus, the massive three-form multiplet has altogether four
bosonic and four fermionic degrees of freedom, i.e. twice
the number of of physical degrees of freedom of S.7 To see
this more explicitly let us now turn to the effective action
suggested in [5].

7 In [5] it is suggested that the massive three-form multiplet
can be described equivalently by two chiral multiplets
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4 The effective action of a massive three-form

References [5] propose a modification of the VY effec-
tive action such that also glueball masses can be accom-
modated. Here we further generalize this action by also
adding a Fayet–Iliopoulos term which will lead to the pos-
sibility of describing a glueball condensate. The basic idea
is to take the constraints (3) seriously also at the quantum
level and view S not as a chiral field but as a constrained
chiral multiplet or in other words as the field strength of
a three-form multiplet. In this case the basic variable of
the effective theory is not S but rather U and the effec-
tive action should be formulated in terms of U . Adding
(S-dependent) mass and Fayet–Iliopoulos terms one has8

L =
∫

d4θ

(
Keff(S, S̄) − 1

2
m2

U (S, S̄) (U −G)2 (16)

+ ξ(S, S̄) (U −G)
)

+
∫

d2θWeff(S) + h.c. ,

where Weff(S) is as in (6) but should now be viewed as
a function of U . Keff ,m

2
U , ξ are arbitrary functions of S;

in order to determine the minimum and the mass spec-
trum of the theory we do not really need to know their
full analytic structure but only the first term in a Taylor
expansion around 〈S〉. As we have already stated above,
in order to accommodate a supersymmetric VEV for S
the relation (11) has to be modified to S = 〈S〉 − 4D̄2U .
Strictly speaking we should use this form of S to derive
the effective action in components and then determine 〈S〉
by the minimum energy condition. As expected this pro-
cedure leads again to (7). In order not to overload the
notation and to make the following formulas look more
canonical let us chose the specific vacuum 〈S〉 = Λ3 right
from the beginning and define

S = Λ3 + Λ2Ŝ , Ŝ ≡ −4D̄2U , 〈Ŝ〉 = 0 . (17)

Let us stress that choosing one of the other vacua of (7)
yields an entirely equivalent result. In fact also for the
massive three-form we recover the result of [6] that the
minimum energy condition can be expressed as in (14).
Using dimensional analysis we can constrain the leading
terms in the Taylor expansion around 〈S〉 of the couplings
to be

Keff(S, S̄) = kŜ
¯̂
S + O((Ŝ ¯̂

S)2) ,

m2
U (S, S̄) = m2

U + O(Ŝ ¯̂
S) , (18)

ξ(S, S̄) = ξΛ2 + O(Ŝ ¯̂
S) ,

where by slight abuse of notation k,m2
U , ξ now denote con-

stants.
The next task is to compute the Lagrangian (16) in

components and determine the vacuum and the mass ma-
trices. To a large extent this has already been done in [5]

8 Obviously, one can add higher powers of U −G to L. How-
ever, such terms do not influence the mass spectrum but cor-
respond instead to additional interactions

and thus we can be very brief in the following. The only
difference compared to [5] is that we do not use a specific
S-dependence for the couplings Keff and m2

U since they
do not enter the mass matrices. Furthermore, we add a
Fayet–Iliopoulos term in order to allow for the possibility
of a non-trivial 〈U〉. Following [5] we expand U in compo-
nent fields as follows

U = 〈B〉 +B + iθχ− iθ̄χ̄+
1
16
θ2Ā+

1
16
θ̄2A (19)

+
1
48
θσµθ̄εµνρκC

νρκ +
1
2
θ2θ̄

(√
2

8
ψ̄ + σ̄µ∂µχ

)

+
1
2
θ̄2θ

(√
2

8
ψ − σµ∂µχ̄

)
+

1
4
θ2θ̄2

(
1
4
Σ − ∂µ∂µB

)
,

where B is a real and A a complex scalar field, Cνρκ is the
three-form, χ, ψ are Weyl fermions and Σ is an auxiliary
field. We have already anticipated the fact that the lowest
component of U will receive a VEV due to the presence of
the Fayet–Iliopoulos term and therefore included a term
〈B〉. Using (17) one identifies the components of Ŝ by

Ŝ = A+
√

2θψ + θ2(Σ + iF4) , (20)

where F4 = 1
3!εµνρσ∂

µCνρσ. In order to have canonically
normalized kinetic terms for all fields we need to further
rescale Ŝ → k− 1

2 Ŝ and B →
√

2
mU

B, χ →
√

2
mU

χ. Inserted
into (16) and using (18), (19) and (20) one arrives at a
Lagrangian written in terms of the massive three-form C3
and its field strength F4. The auxiliary fieldΣ is eliminated
by its equation of motion,

Σ =
mU

16
√

2k
B − N̂Λ

k
ReA . (21)

Finally, dualizing C3 to a scalar σ via

Cµνρ = − 16
mU

√
k

2
εµνρκ ∂

κσ , (22)

we arrive at

L = −∂µΦ
i∂µΦi − iΨ̄ iσ̄µ∂µΨ

i −m2
ijΦ

iΦ̄j (23)

−
(

1
2
mijΨ

iΨ j + h.c.
)

+ higher order interactions ,

where Φi ≡
(
A, 1√

2
(B + iσ)

)
, Ψ i ≡ (ψ, χ), i = 1, 2 and

mij =
(
m11 m12

m12 0

)
, m11 =

N̂Λ

k
, m12 =

mU

16
√
k
.

(24)
(Of course this is exactly the same result obtained in [5]
which can be explicitly seen by using the correspondence
k = 1

9α , mU =
√

2/δ Λ, N̂ = γ.)
Furthermore, a proper minimum of the potential re-

quires

〈B〉 = ξ
Λ2

m2
U

. (25)
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As anticipated the Fayet–Iliopoulos term ξ induces a VEV
for B. In terms of the original SU(N) gauge theory B is a
mixture of trF 2 and λλ as can be seen from (8), (20) and
(21).

Let us now turn to a discussion of the mass spectrum.
From (24) we see that for the fermion ψ sitting in Ŝ a
Majorana mass term arises directly from the VY superpo-
tential. mU on the other hand induces a Dirac mass term
for ψ–χ while no Majorana mass term arises for χ. In the
next section we need the eigenvalues of the fermion mass
matrix mij and the bosonic mass matrix m2

ij which are
given by

mf =
1
2
m11 ±

√
m2

12 +
1
4
m2

11 ,

m2
b =

1
2
m2

11 +m2
12 ±m11

√
m2

12 +
1
4
m2

11 . (26)

If we consider the correction to the superpotential W
computed in [1] the VEV for S is shifted and an addi-
tional contribution to m11 arises. For instance, after the
inclusion of a purely quadratic correction N̂a2S

2 to the
superpotential, and parameterizing the new vacuum ex-
pectation value of S by 〈S〉 = Λ3 + Λ2δ , m11 is shifted
according to

m11 → m11Λ

(
1

Λ+ δ
+ 2a2Λ

2
)
, (27)

while m12 remains unchanged.

5 Comparison with lattice results

Various simulations for pure SU(2) super-Yang–Mills the-
ories have been performed on the lattice [7]. The two basic
issues arising are on the one hand the recovery of super-
symmetry in the continuum limit and on the other hand
the necessity to include dynamical chiral fermions. Most of
the available lattice results use Wilson-type lattice actions
with a bare gluino mass term added which breaks super-
symmetry (and the chiral symmetry) softly. The gluino
mass is then tuned such that supersymmetry is recovered
in the continuum limit. Restoration of supersymmetry is
checked by computing superconformal Ward identities.

The lattice simulations of [7] show a non-trivial mass
spectrum for four scalar degrees of freedom and two Ma-
jorana fermions which seem to assemble in two chiral mul-
tiplets near the supersymmetric limit. Let us focus on the
bosonic states. The lightest states are the CP -even glue-
ball B (called 0+ in [7]) and the CP -odd gluino condensate
ImA (called a− η′ in [7]) and they are almost degenerate
in mass. The CP -odd glueball σ (0−) and the CP -even
gluino condensate ReA (a−f0) are also degenerate in mass
and heavier than B and ImA. Furthermore, the mass dif-
ference between these two sets of states is much larger
than the value of the gluino mass used in the simulation
and therefore does not appear to be an effect of the softly
broken supersymmetry.

However, taken at face value this is in conflict with ba-
sic properties of supersymmetry. From (23) we learn that
the four bosonic states combine into two complex scalar
fields A and 1√

2
(B + iσ). In terms of the original SU(N)

gauge theory A corresponds to the gluino condensate trλλ
while B + iσ is a mixture of trF 2 + i trFF̃ with A (c.f.
(8), (20) and (21)). The two complex scalar fields A and
1√
2
(B+iσ) do mix via the mass matrix (24) and therefore

the mass eigenstates are a linear combination of A and
B + iσ with generically different masses (c.f. (26)). How-
ever, the mixing is only among complex scalar fields as can
be seen from (23) in that no terms Φ2 or Φ̄2 appear. There-
fore the CP -even and CP -odd states of the same complex
scalar continue to be degenerate in mass. It is in fact a
fundamental property of unbroken supersymmetry that
CP -even and CP -odd states in the same multiplet have
to be degenerate in mass.9 The supermultiplets can mix
but the mass eigenstates again have to be supersymmetric
multiplets and therefore the CP -even and CP -odd states
of the same multiplet are mass degenerate. Thus, A can
mix with B+iσ but the resulting mass eigenstates cannot
lead to a mass split between ImA and ReA. In this respect
the lattice results which show B and ImA mass degenerate
seem to be in conflict with unbroken supersymmetry.

There appear to be various possible resolutions of this
puzzle. First of all it could be that due to the mixing the
states in the lattice simulations have been misidentified.
In the lattice simulation correlation functions of operators
with given quantum numbers are computed for large Eu-
clidean times where they are dominated by the lightest
states with these quantum numbers. This can be used to
extract the mass of the states. Thus, when computing the
correlation function of, say, trF 2, it is in principle possible
that this correlation function is dominated by theCP -even
gluino-ball a−f0. This would imply a mixing between the
bosonic states with the same parity which, however, is
not observed in the lattice simulations [7]. Furthermore,
experience from QCD appears to make this possibility un-
likely [20].

The second possibility is that in the supersymmetric
limit all four states are really degenerate in mass and that
the 0+ glueballB and the CP -odd gluino condensate a−η′
(ImA) are really in different but almost degenerate super-
multiplets. Since the more reliable lattice measurements
are the two light states this would mean that the masses
of the heavy states have to considerably decrease as one
comes closer to the supersymmetric limit. However, im-
proved lattice simulations currently under way do not in-
dicate any tendency in this direction [20].

Thus there remains a puzzle when comparing the mass
spectrum obtained in lattice simulation with computations
based on supersymmetric effective actions. The fact that
the conflict between the two approaches is at such a funda-
mental level makes this only the more interesting. Estimat-

9 This is related to the R-symmetry of the super-algebra
which preserves the complex structure and pairs CP -even and
CP -odd scalars into a complex scalar field
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ing finite size effects both on the lattice and analytically
might shed some light on this puzzle.

Let us now take the second solution seriously and ask
what we can learn for the mass spectrum if we insist on
supersymmetry and only take the two low-lying states into
account. In this case all states have to be almost degenerate
and we can determine the parameters k and mU . This
“predicts” the masses for the 0− and a − f0 as well as
their mixing angle. From (26) we learn that a degeneracy
among all four bosonic and fermionic states is not so easy
to achieve and requires

m12 � m11 ⇒ mU � N̂√
k
Λ . (28)

Thus the mass of the three-form mU has to be the domi-
nant contribution in the mass matrices and is far more im-
portant than the contribution arising from the Veneziano–
Yankielowicz–Dijkgraaf–Vafa superpotential. This also im-
plies that once the Dijkgraaf–Vafa correction is taken into
account m11 given in (27) cannot be large. Furthermore,
from (24) we see that in this limit the mixing angle of the
bosons is minimal while the fermions mix maximally.

6 Conclusions

In this letter we expanded on a suggestion put forward
in [5,6] to reformulate the effective action of strongly cou-
pled supersymmetric gauge theories in terms of a (mas-
sive) three-form multiplet in order to account for glueball
masses. A gauge invariant formulation of the mass term
requires the presence of additional degrees of freedom and
doubles the spectrum compared to the original Veneziano–
Yankielowicz effective theory. Indeed the lattice simula-
tions do measure four massive scalars and two Majorana
fermions and in this sense confirm the proposal of [5]. How-
ever, taken at face value the observed mass spectrum is
incompatible with supersymmetry in that the CP -even
and CP -odd part of the complex scalars show different
masses. We discussed two possible resolutions of this puz-
zle. Either there is a misidentification of states or all states
have to be almost degenerate in mass. This in turn requires
that the mass term of the three-form is the dominant con-
tribution and no mixing among the bosonic states occurs
while the fermions have to be maximally mixed. It would
be worthwhile to further improve the lattice simulation
and shed light on this puzzle.

We also introduced a Fayet–Iliopoulos term ξ into the
theory and showed that it can lead to a non-trivial glueball
condensate 〈trF 2〉 
= 0. It would also be nice to measure
〈λλ〉 and 〈trF 2〉 on the lattice and determine in this way
Λ and ξ.
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